CS-200
Computer Architecture

Part 3c. Memory Hierarchy
Virtual Memory

Paolo lenne

<paolo.ienne@epfl.ch>

The Five Classic Components of a Computer

Processor Interfaces

Control

Segmentation Fault? Bus Error?

(18 icvmBl100:~/tmp> cat code.c
#include <stdlib.h>
#include <stdio.h>
int main() {
int *p = (int *) 1234; /* 1li tO, 1234
printf("%i",*p);} /* la a0, format
/* 1w al, o(to)
/* jal printf

|19]icvm@lo0:~/tmp> gcc code.c -0 code

[20]icvm@100:~/tmp> code
Segmentation fault (core dumped)

[21]icvm@100:~/tmp>

*/
*/
*/
*/

The OS has detected our access to
address 1234 and, because it is not
“our” memory, it has blocked it!

[But HOW?!]

Overview

Three problems to solve:

* How to “protect” memory so that each program (processes)
running “simultaneously” in the system can only access itw own

d

ata? How can we isolate processes?

 What happens if the main memory (DRAM) is not sufficient for

ne execution of a program? Can we use our disk? How?

ow do we run several programs (processes) “simultaneously”?

t
. }
I_

ow do we load multiple programs in memory? Where?

Needs of Multiprogrammed System

(o

\

Relocation

— All programs must be written without knowledge of where they will be
In memory

~N

J

Protection

— Programs can access only their own data

* Space

— |f several programs run at the same time, memory shortage will be
even more a problem

0x1234

Ox123c

0x1248

0x1264

0x12709

add
add
sltu
beq
1w
addi
beq
andi
add
srl
subi

addi
addi

ret

Simple Solution:
Relocation at Load Time

Vo,
to,
t2,
t2,
t3,
t4,
t4,
t1,
Vo,
t3,
t4,

zero, zero
zero, zero
to, al

Zero, @XEEE; 0x1270

0(a0)

zZero, 35

zero, 0x9 ox1264
t3, 1

vo, tl

t3, 1
t4, 1

% 0x1248
5, tos 1

ad, ao, 4

M @x123c

H H HF H HHHEHHEHHEHEHHEHH

vO = 0

t0 = 0

t2 = (10 < al)

if (!t2) goto fin
t3 = mem[a0d]

t4 = 32

if (!t4) goto next
tl =1t3 &1

vl = vO + t1l

t3 = 1t3 >> 1

t4 =t4 -1

goto inner

to = to + 1

a0 = aod + 4

goto outer

return to caller

Simple Solution:
Relocation at Load Time

* Relocation must actually take place at binary level, not assembly code
 We need relocation tables to know where are the addresses to change

0x0000: 00 00 10 20 0x1234: 00 00 10 20
00 00 40 20 00 00 40 20
01 05 50 2B 01 05 50 2B
10 OA 00 0B 10 OA 00 0B
8C 8B 00 00 8C 8B 00 00
20 0C 00 20 20 oC 00 20
10 oC 00 05 10 oC 00 05
31 69 00 01 31 69 00 01
00 49 10 20 00 49 10 20
00 0B 58 42 00 0B 58 42
21 8C FF FF 21 8C FF FF
08 00 00 06 08 00 04 8F
21 08 00 01 21 08 00 01
20 84 00 04 20 84 00 04
08 00 00 02 08 00 04 92

03 EQ 00 08 03 EQ 00 08

Simple Solution:
Relocation at Load Time

Over time (starting and ending
programs), gaps will form

0x0000
0x2000
0x4000
Ox6000
0x8000
OxAQ00
OxC000

Program
[] [] [] #4
* Limitations:

— Large amount of work to do at load time How can | load a program bigger
. than the individual gaps?!

Relocation in Hardware:
Base and Bounds MMU

processor
Main Memory
A Memory Management Unit Virtualjgdress
can perform this relocation
dynamically iMM_U
i
I < _
!
! —
| Bounds
> i memory
|
i
!

Fhysical Address

Memory Management Unit (MMU)

Memory
Management
Unit

Configuration
Registers

Virtual and Tables Physical

Processor |Address Address Memory
(r—- (r—-

Virtual and Physical Memory

Virtual Memory: memory that the OS Physical Memory: memory actually
allows a program to believe it has available in the computer
Virtual Address: conventional address Physical Address: real location in
used by a program =2 the MMU must physical memory; identifies actual
translate it into a physical address at storage

the time of an access

Memory
Management
Unit

Gonfiguration
Registers

Virtual and Tables Physical
Processor |Address| E==== |Address| Memory

————

Virtual and Physical Memory

\

Virtual ‘ ﬁ
Memories Each program think
it is alone in the system
with all memory
Q Q Q Q Q Q Q ’ available...

...but the reality is different!
Physical g

Memor N Programs are now movable

Y S S S 3 _EF % because their view of the

address space does not change

Relocation in Hardware:
Base and Bounds MMU

Main Memory

Virtual Address

MMU

Bounds

|
|
|
o

[J
‘)}: Base
/ % escecennconsoos

This part of the circuit is doing nothing
else than what we were doing when Physical Address

relocating at load time: add an offset

bheooosoecosceeesd

Relocation in Hardware:
Base and Bounds MMU

Main Memory
This part of the circuit is checking Virtual Address
if the program is asking for an

address that is too big... N ———
le '

| [J

\ i .

>.‘: o

. . .
:: Bounds :

Fhysical Address

Virtual and Physical Memory

Virtual < ~~
. If Program #2 were
Memories
allowed to make an
access beyond its
occupied space...
& X X 5 % X = ...it would potentially access
data or instructions of
other programs!
Physical
Memory

0x0000
0x2000
0x4000
0x6000
0x8000
OxA000
0xC000

Relocation in Hardware:
Base and Bounds MMU

Main Memory

Virtual Address

If the program does that, we raise
an exception and most likely
the OS will kill the program

Fhysical Address

Relocation in Hardware:
Base and Bounds MMU

Main Memory

Virtual Address

If the program does that, we raise
an exception and most likely
the OS will kill the program

Fhysical Address

Relocation in Hardware:
Base and Bounds MMU

Of course, the Base and Bounds
values are different for each program
— On a context switch (changing the

program running), the OS must

reload these registers

Main Memory

Virtual Address

Base #1

Bound #2

Fhysical Address

0x0000
0x2000
0x4000
OX6000fF———
0x8000
0xAQ00
0xG000

Needs of Multiprogrammed System

r 3 N
* Relocation <

— All programs must be wri without knowledge of where they will be

In memory

* Protection

U Programs can access only their own dat

* Space

— |f several programs run at the same time, mexXnory shortage will be
even more a problem

Protection is a but crude: Space allocation may need garbage
one chunk of memory collection, moving programs and data, etc.

Segmentation and Paging

* Segmentation (an extension of Base&Bounds) splits the physical
memory exactly as needed by each program

— Arbitrary start of a block
— Arbitrary length
— Multiple blocks per application

* Paging splits the memory in equal small blocks (e.g., 4-64KiB)
and assigns as many as needed to each program

As often, names are not always consistent...

Segmentation and Paging

: / — A contiguous chunk of appropriate size of physical memory
AL

Segmentation

0x0000
0x2000
0x4000
Ox6000
0x8000
OxAQ00
OxC000

A sufficient number of pages
M of physical memory

Paging

0x0000
0x2000
0x4000
0x6000
0x8000
OxA000
OxC000

How Do We Translate Now?

// > Whereisin physical memory, the
virtual address 9x2345
of Program #27?

V.

If pages are ©x1000 in size.

Virtual it is part of the page
Memories 0x2345 / 0x1000 = page 2
and it is at this position in the page
S 3 3 g g Z S

OXA OxB OxC OxA

1 8

. 2 5
Physical 3 OxB

Memory

The physical address is J
5 x 9x1000 + 0x345 = 0x5345

0x0000
;onooﬁ

How Do We Translate Now?

1211 0 The division by

Virtual Address Virtual Page Number Page Offset 4096 = 212

We will call this the

_)2 Page Table
2: /
3:
<«
2n—11 — 1

Some additional bits
of information

m v 12 11 v 0 (see later)

Physical Address Physical Page Number Page Offset

Virtual Address Translation in a Paged MMU

Page Table Base (

Virtual Address Main Memory
Virtual Page # Offset
31 12-11 0
20
12 Page Table <_
ot i - : N\
| |
| = _ + Vi o e We place the Page Table
| i bits Page # in memory somewhere...
! i
! Table Limit | o
| 32 | 20 ...and we give its address
|
: : _~ to the MMU
| i -~
' !

31 ! 12-11] 0 32
Physical Page # Offset

Physical Address

Virtual Address Translation for Program #2

Virtual Physical .
0x0000 0x0000p Virtual Address Main Memory
00002 123
;; 31 12-11 0
0x2000 0X2000 20 Page Table
0000A 1000 0000
Poges| 00 MM | 12 00008 1000 0001
X400 R | | 00005 1000 0002
| 32 0000B 1000 0003
| 297 (NA) 1000 0004
297 (NA 1000 0005
oreooo| - 0X5123 | —
i 00003 A different
| 20
0x8000 0x8000 I page ta ble
' er program
| 1000 0000 p p g
0XA000 OXA000 i
0xC000 0xC000 :E . 0000 5123
31 | 12-11 0 a9
00005 123
Physical Address

Memory Allocation Is Easy Now

Noncontiguous areas are now ok

AL

Virtual Program
Memory &4

0x0000

Physical
Memory

0x0000

Any empty page does the job

Page Tables Can Be Big

* Page tables could be very large
— E.g., 64 GiB of memory in 4 KiB pages require 2?4 entries or ~“64 MiB

* For a program that uses only a few MB, most entries are empty

e Several possible solutions (see COD and exercise book):
— Hashed Tables
— Paged Segmentation
— Multilevel Page Tables

Multilevel (or Hierarchical) Page Tables

31

12

Virtual Address Virtual Page Number <

Base Pointer

First level

O\

20 bits =2
up to 22° = 1 Mi pages
to translate

Second level

Index into a unique first-level

1024-element table

Up to 1024 tables

using 10 bits of the page #

Index into one of up-to-1024 second-level
1024-element tables
using the other 10 bits of the page #

with 1024 entries

- 1 Mi entries

Physical Address

12

Physical Page Number

Two Memory Accesses Every Time?!

Page Table Base

Virtual Address Main Memory To make the
Virtual Page # Offset memory access
) w ’ we need...
12 age Table ’

e [-
: 32
| \ oot s A
I bits Page #
!
I Table Limit
I 20
| ...we have to read
I .
i the page table first!
|

31 ! 12-11] 0
Physical Page # Offset

f—

=

Physical Address

A Specialized “Cache” for the Translations

We will call this
Translation Lookaside Buffer
or TLB

TLB Miss Exception <€

What happens if
we have a miss in
the TLB?!

1211 0
Virtual Page Number Page Offset | Virtual Address
l |
= |
=) The actual MMU
= ! between processor
— I and memory
m »l« 1211 W 0

Physical Page Number

Page Offset

Physical Address

TLB Miss

* The processor gets an exception:
— The user program stops execution
— The OS is invoked and searches the translation in the Page Table

— If it does not find the translation, the user is trying to access memory
that has not been allocated to it = kill the program and we are done

— Otherwise, it places the translation in the TLB

— Restarts execution from the user program’s memory instruction that
generated the TLB Miss

— By construction, this time the TLB will hit and the user program will
continue

Memory Protection

* Typically Page Table entries have several attributes (OS specific):
— Valid (to indicate presence in main memory) ‘
— Allocated (to indicate existence}

}
— Dirty (to indicate a copy-back is needed) < \
— Used (to help determine which page to replace) | We will d
e Wi ISCUSS
— Readable these later
— Writable
— Executable

[« If the TLB can be written only by the OS (e.g., kernel mode), the OS can

protect the Page Tables (prevent users from writing them), protect its
. code, and thus control completely memory access rights)

~\

Needs of Multiprogrammed System

r X N
* Relocation

— All programs must be written without knowledge of where they will be
In memory

* Protection
— Programs can access only their own data

e

Space

— |f several programs run at the same time, memory shortage will be
even more a problem

Not All Pages Need to Be in Main Memory!

Virtual page
number

A new bit in the page table
tells whether the page is
in memory or on disk

\

\ If memory is full,
a page can be

. moved to disk

Page table
hysical page or Physical memory
Valid | disk address
1 —
1 ./<
1 —
3
0 —
~1 N/
1 — <V
0 e _
1 ¢« </ Disk storage
1 o /7 N T
0 o/ ~
1 . \\
\\ /

Source: COD, © Morgan Kauffman 1998

TLB Miss — Revised

* When the OS searches the page table after a TLB miss, now there is a new
possibility: the addressed page is on disk
— Copy another page from memory to disk to make space
— Bring back into memory the addressed page

— Update the page table ‘\ Evuct
— Update the TLB

. Swap
— Continue as usual
 Were are these pages on disk? Depends on the OS...

— Linux puts them in a special raw partition called swap
— Windows puts them in the file pagefile.sys

Caches vs. Virtual Memory

Cache Virtual Memory
Main Main SN AR
Storage
Cache |€&=—> Memory Memory > g
(e.g., disk)
Cache holds the most frequently used blocks Main memory holds the most frequently used pages
If cache is full 2 evict (LRU, etc.) If main memory is full 2 evict/swap (LRU, etc.)
Cache miss = penalty 10x-100x Page fault =2 penalty 100,000x-10,000,000x
T A page is
A cache block is typically 4,096 bytes
A cache missis | typically 64 bytes Virtual Memory can only be A page fault is
resolved in Some caches can be | copy-back = dirty bit resolved in
HARDWARE SOFTWARE

write-through Clever replacement policies

Page Table Attributes — Revisited

e Typically Page Table entries have several attributes (OS specific):
— Valid (to indicate presence in main memory)
— Allocated (to indicate existence}
— Dirty (to indicate a copy-back is needed)
— Used (to help determine which page to replace)
— Readable
— Writable
— Executable

Virtual Addresses

Virtual Memory € Cache

Virtually Addressed Cache

4)
Processor Cache
_)

Most common in modern

high-end processors

Physically Addressed Cache

S95SaUPpPY |edisAud

TLB Misses, Cache Misses and Page Faults

Hardware Software
— e —_— o e —
If all goes well, CPU / MMU Cache OS / Main Memory 0S / Disk
everything in /7~ _ N\
hardware Virtual Address [1eISSUe
(Exception)

> FAST

h h (
< Search TLB > < Search Cache > <Search PageTabIe> ‘\

@

Miss

Update Cache
<Een- Phys. Addres& <rom Main Memor
|

Update Main
Memory Modern processors
from Disk
also search the page
table in hardware

> <3en. Phys. Addresdeate Page Table>

Return Value
< from Cache > < SRR TLE >
|

Memory Data

Overall Picture: The System Side

New types of memory (e.g., FLASH is added either
as main memory or Solid-State Disks, SDD)

Multiple levels of cache A
(today typically three) - D
A complex design to account for
trade-offs in performance, cost, etc. D
r ~N Tertiary
Storage
Lo ——— : (Network, Tape)
: Secondary
Storage
(Disk)
MMU Main
= | Memory
L2 |i]| (DRAM)
= L1 Cache |:
; Cache (SRAM)
Regs| ¢ [(SRAM)
Capacity (B): 100-1K 10K-100K 10K-1M 10M-1G 1-100G T

Speed (s): n 1-10n 10n 100n 10m 1-10

Overall Picture: The Programmer Side

A simple uniform

programming paradigm! \ \

Processor

Memory

Regs

Size (words): 25-29 232 _ 964

Summary

Virtual memory offers the illusion of a perfectly uniform and identical memory system
to each individual program

Additionally, virtual memory is a form of caching between main memory and
secondary storage

A Memory Management Unit implements mechanisms to translate virtual addresses
into physical ones

Translation Lookaside Buffers are special the “caches” (software managed!) used to
perform the translation efficiently in the MMUs

As with caches, all this is transparent to users: programs read and write memory
oblivious of all this—and exceptions are used to correct problems

It is @ complex interaction of hardware (MMU, TLB, caches) and software; exceptions
are an essential ingredient

References

e Patterson & Hennessy, COD — RISC-V Edition
— Section 5.7

	CS-200�Computer Architecture�—�Part 3c. Memory Hierarchy�Virtual Memory
	The Five Classic Components of a Computer
	Segmentation Fault? Bus Error?
	Overview
	Needs of Multiprogrammed System
	Simple Solution: �Relocation at Load Time
	Simple Solution: �Relocation at Load Time
	Simple Solution: �Relocation at Load Time
	Relocation in Hardware:�Base and Bounds MMU
	Memory Management Unit (MMU)
	Virtual and Physical Memory
	Virtual and Physical Memory
	Relocation in Hardware:�Base and Bounds MMU
	Relocation in Hardware:�Base and Bounds MMU
	Virtual and Physical Memory
	Relocation in Hardware:�Base and Bounds MMU
	Relocation in Hardware:�Base and Bounds MMU
	Relocation in Hardware:�Base and Bounds MMU
	Needs of Multiprogrammed System
	Segmentation and Paging
	Segmentation and Paging
	How Do We Translate Now?
	How Do We Translate Now?
	Virtual Address Translation in a Paged MMU
	Virtual Address Translation for Program #2
	Memory Allocation Is Easy Now
	Page Tables Can Be Big
	Multilevel (or Hierarchical) Page Tables
	Two Memory Accesses Every Time?!
	A Specialized “Cache” for the Translations
	TLB Miss
	Memory Protection
	Needs of Multiprogrammed System
	Not All Pages Need to Be in Main Memory!
	TLB Miss – Revised
	Caches vs. Virtual Memory
	Page Table Attributes – Revisited
	Virtual Memory ↔ Cache
	TLB Misses, Cache Misses and Page Faults
	Overall Picture: The System Side
	Overall Picture: The Programmer Side
	Summary
	References

