
1

CS-200
Computer Architecture

—
Part 3c. Memory Hierarchy

Virtual Memory

Paolo Ienne
<paolo.ienne@epfl.ch>

2

The Five Classic Components of a Computer

Control

Datapath

Memory

Out

In

Processor Interfaces

Memory

3

Segmentation Fault? Bus Error?

[18]icvm0100:~/tmp> cat code.c
#include <stdlib.h>
#include <stdio.h>
int main() {

int *p = (int *) 1234; /* li t0, 1234 */
printf("%i",*p);} /* la a0, format */

/* lw a1, 0(t0) */
/* jal printf */

[19]icvm0100:~/tmp> gcc code.c -o code

[20]icvm0100:~/tmp> code
Segmentation fault (core dumped)

[21]icvm0100:~/tmp>

The OS has detected our access to
address 1234 and, because it is not

“our” memory, it has blocked it!

But HOW?!

4

Overview

Three problems to solve:
• How to “protect” memory so that each program (processes)

running “simultaneously” in the system can only access itw own
data? How can we isolate processes?

• What happens if the main memory (DRAM) is not sufficient for
the execution of a program? Can we use our disk? How?

• How do we run several programs (processes) “simultaneously”?
How do we load multiple programs in memory? Where?

5

Needs of Multiprogrammed System

• Relocation
– All programs must be written without knowledge of where they will be

in memory

• Protection
– Programs can access only their own data

• Space
– If several programs run at the same time, memory shortage will be

even more a problem

6

Simple Solution:
Relocation at Load Time

0x0000: add v0, zero, zero # v0 = 0
add t0, zero, zero # t0 = 0

0x0008: sltu t2, t0, a1 # t2 = (t0 < a1)
beq t2, zero, 0x003C # if (!t2) goto fin
lw t3, 0(a0) # t3 = mem[a0]
addi t4, zero, 32 # t4 = 32

0x0014: beq t4, zero, 0x0030 # if (!t4) goto next
andi t1, t3, 1 # t1 = t3 & 1
add v0, v0, t1 # v0 = v0 + t1
srl t3, t3, 1 # t3 = t3 >> 1
subi t4, t4, 1 # t4 = t4 - 1
j 0x0014 # goto inner

0x0030: addi t0, t0, 1 # t0 = t0 + 1
addi a0, a0, 4 # a0 = a0 + 4
j 0x0008 # goto outer

0x003c: ret # return to caller

0x1234

0x123c

0x1248

0x1264

0x1270

0x1248

0x123c

0x1264

0x1270

7

Simple Solution:
Relocation at Load Time

• Relocation must actually take place at binary level, not assembly code
• We need relocation tables to know where are the addresses to change

0x0000: 00 00 10 20
00 00 40 20
01 05 50 2B
10 0A 00 0B
8C 8B 00 00
20 0C 00 20
10 0C 00 05
31 69 00 01
00 49 10 20
00 0B 58 42
21 8C FF FF
08 00 00 06
21 08 00 01
20 84 00 04
08 00 00 02
03 E0 00 08

0x1234: 00 00 10 20
00 00 40 20
01 05 50 2B
10 0A 00 0B
8C 8B 00 00
20 0C 00 20
10 0C 00 05
31 69 00 01
00 49 10 20
00 0B 58 42
21 8C FF FF
08 00 04 8F
21 08 00 01
20 84 00 04
08 00 04 92
03 E0 00 08

8

Simple Solution:
Relocation at Load Time

• Limitations:
– Large amount of work to do at load time
– Inflexible cannot be changed later!

Over time (starting and ending
programs), gaps will form

Program
#4

How can I load a program bigger
than the individual gaps?!
 garbage collection…

9

Relocation in Hardware:
Base and Bounds MMU

A Memory Management Unit
can perform this relocation

dynamically

processor

memory

1
0

Memory Management Unit (MMU)

1
1

Virtual and Physical Memory

Physical Memory: memory actually
available in the computer

Physical Address: real location in
physical memory; identifies actual

storage

Virtual Memory: memory that the OS
allows a program to believe it has

Virtual Address: conventional address
used by a program  the MMU must
translate it into a physical address at
the time of an access

1
2

Virtual and Physical Memory

Virtual
Memories Each program think

it is alone in the system
with all memory

available…

Physical
Memory

…but the reality is different!

Programs are now movable
because their view of the

address space does not change

1
3

Relocation in Hardware:
Base and Bounds MMU

This part of the circuit is doing nothing
else than what we were doing when
relocating at load time: add an offset

1
4

Relocation in Hardware:
Base and Bounds MMU

This part of the circuit is checking
if the program is asking for an

address that is too big…

1
5

Virtual and Physical Memory

Virtual
Memories

Physical
Memory

If Program #2 were
allowed to make an
access beyond its
occupied space…

…it would potentially access
data or instructions of

other programs!

1
6

Relocation in Hardware:
Base and Bounds MMU

If the program does that, we raise
an exception and most likely
the OS will kill the program

1
7

Relocation in Hardware:
Base and Bounds MMU

If the program does that, we raise
an exception and most likely
the OS will kill the program

1
8

Relocation in Hardware:
Base and Bounds MMU

Of course, the Base and Bounds
values are different for each program
 On a context switch (changing the

program running), the OS must
reload these registers

Bound #2
Base #1

1
9

Needs of Multiprogrammed System

• Relocation
– All programs must be written without knowledge of where they will be

in memory

• Protection
– Programs can access only their own data

• Space
– If several programs run at the same time, memory shortage will be

even more a problem

Space allocation may need garbage
collection, moving programs and data, etc.

Protection is a but crude:
one chunk of memory

2
0

Segmentation and Paging

• Segmentation (an extension of Base&Bounds) splits the physical
memory exactly as needed by each program
– Arbitrary start of a block
– Arbitrary length
– Multiple blocks per application

• Paging splits the memory in equal small blocks (e.g., 4-64KiB)
and assigns as many as needed to each program

As often, names are not always consistent…

2
1

Segmentation and Paging

Segmentation

Paging

A contiguous chunk of appropriate size of physical memory

A sufficient number of pages
of physical memory

2
2

Virtual
Memories

Physical
Memory

How Do We Translate Now?
Where is in physical memory, the

virtual address 0x2345
of Program #2?

Program #2
0 0xA
1 8
2 5
3 0xB

If pages are 0x1000 in size.
it is part of the page

0x2345 / 0x1000 = page 2

and it is at this position in the page

0x2345 mod 0x1000 = 0x345

The physical address is
5 × 0x1000 + 0x345 = 0x5345

0 1 2 3 4 5 6 7 8 9 0xA 0xB 0xC

2
3

How Do We Translate Now?

012 11n The division by
4096 = 212Virtual Page Number Page OffsetVirtual Address

Physical Address

012 11m

Physical Page Number Page Offset

We will call this the
Page Table

Some additional bits
of information

(see later)

0:
1:
2:
3:
…
…

2n – 11 – 1:

2
4

Virtual Address Translation in a Paged MMU

We place the Page Table
in memory somewhere…

…and we give its address
to the MMU

2
5

Virtual Address Translation for Program #2

A different
page table

per program

2
6

Memory Allocation Is Easy Now

Virtual
Memory

Physical
Memory

Program
#4

Pr
og

. #
4

pa
ge

 2

Pr
og

. #
4

pa
ge

 1
Pr

og
. #

4
pa

ge
 0

Any empty page does the job

Noncontiguous areas are now ok

2
7

Page Tables Can Be Big

• Page tables could be very large
– E.g., 64 GiB of memory in 4 KiB pages require 224 entries or ~64 MiB

• For a program that uses only a few MB, most entries are empty

• Several possible solutions (see COD and exercise book):
– Hashed Tables
– Paged Segmentation
– Multilevel Page Tables
– …

2
8

Multilevel (or Hierarchical) Page Tables
1231

Virtual Page NumberVirtual Address

Physical Address

12m

Physical Page Number

Base Pointer +

+

First level

Second level

Index into a unique first-level
1024-element table

using 10 bits of the page #

Index into one of up-to-1024 second-level
1024-element tables

using the other 10 bits of the page #

20 bits 
up to 220 = 1 Mi pages

to translate

Up to 1024 tables
with 1024 entries
 1 Mi entries

2
9

Two Memory Accesses Every Time?!

To make the
memory access

we need…

…we have to read
the page table first!

3
0

A Specialized “Cache” for the Translations

Virtual Address

Physical Address

012 11n

Virtual Page Number Page Offset

012 11m

Physical Page Number Page Offset

=
=
=
=
=
=

We will call this
Translation Lookaside Buffer

or TLB

The actual MMU
between processor

and memory

What happens if
we have a miss in

the TLB?!

TLB Miss Exception

3
1

TLB Miss

• The processor gets an exception:
– The user program stops execution
– The OS is invoked and searches the translation in the Page Table
– If it does not find the translation, the user is trying to access memory

that has not been allocated to it  kill the program and we are done
– Otherwise, it places the translation in the TLB
– Restarts execution from the user program’s memory instruction that

generated the TLB Miss
– By construction, this time the TLB will hit and the user program will

continue

3
2

Memory Protection

• Typically Page Table entries have several attributes (OS specific):
– Valid (to indicate presence in main memory)
– Allocated (to indicate existence}
– Dirty (to indicate a copy-back is needed)
– Used (to help determine which page to replace)
– Readable
– Writable
– Executable
– …

• If the TLB can be written only by the OS (e.g., kernel mode), the OS can
protect the Page Tables (prevent users from writing them), protect its
code, and thus control completely memory access rights

We will discuss
these later

3
3

Needs of Multiprogrammed System

• Relocation
– All programs must be written without knowledge of where they will be

in memory

• Protection
– Programs can access only their own data

• Space
– If several programs run at the same time, memory shortage will be

even more a problem

3
4

Not All Pages Need to Be in Main Memory!

So
ur

ce
: C

OD
, ©

 M
or

ga
n

Ka
uf

fm
an

 1
99

8

A new bit in the page table
tells whether the page is

in memory or on disk If memory is full,
a page can be
moved to disk

3
5

TLB Miss – Revised

• When the OS searches the page table after a TLB miss, now there is a new
possibility: the addressed page is on disk
– Copy another page from memory to disk to make space
– Bring back into memory the addressed page
– Update the page table
– Update the TLB
– Continue as usual

• Were are these pages on disk? Depends on the OS…
– Linux puts them in a special raw partition called swap
– Windows puts them in the file pagefile.sys

Evict

Swap

3
6

Caches vs. Virtual Memory

Cache Main
Memory

Cache

Main
Memory

Secondary
Storage

(e.g., disk)

Virtual Memory

Cache holds the most frequently used blocks Main memory holds the most frequently used pages

If cache is full  evict (LRU, etc.) If main memory is full  evict/swap (LRU, etc.)

Cache miss  penalty 10×-100× Page fault  penalty 100,000×-10,000,000×

A cache miss is
resolved in

HARDWARE

A page fault is
resolved in
SOFTWARE

A cache block is
typically 64 bytes

A page is
typically 4,096 bytes

Some caches can be
write-through

Virtual Memory can only be
copy-back dirty bit

Clever replacement policies

3
7

Page Table Attributes – Revisited

• Typically Page Table entries have several attributes (OS specific):
– Valid (to indicate presence in main memory)
– Allocated (to indicate existence}
– Dirty (to indicate a copy-back is needed)
– Used (to help determine which page to replace)
– Readable
– Writable
– Executable
– …

3
8

Most common in modern
high-end processors

Virtual Memory ↔ Cache

Processor Cache MMU Memory

Processor MMU Cache Memory

Vi
rt

ua
l A

dd
re

ss
es

Physical Addresses

Virtually Addressed Cache

Physically Addressed Cache

3
9

TLB Misses, Cache Misses and Page Faults

If all goes well,
everything in

hardware
 FAST

Modern processors
also search the page

table in hardware

4
0

Overall Picture: The System Side

A complex design to account for
trade-offs in performance, cost, etc.

Multiple levels of cache
(today typically three)

New types of memory (e.g., FLASH is added either
as main memory or Solid-State Disks, SDD)

4
1

Overall Picture: The Programmer Side

25 - 29 232 - 264

A simple uniform
programming paradigm!

4
2

Summary
• Virtual memory offers the illusion of a perfectly uniform and identical memory system

to each individual program
• Additionally, virtual memory is a form of caching between main memory and

secondary storage
• A Memory Management Unit implements mechanisms to translate virtual addresses

into physical ones
• Translation Lookaside Buffers are special the “caches” (software managed!) used to

perform the translation efficiently in the MMUs
• As with caches, all this is transparent to users: programs read and write memory

oblivious of all this—and exceptions are used to correct problems
• It is a complex interaction of hardware (MMU, TLB, caches) and software; exceptions

are an essential ingredient

4
3

References

• Patterson & Hennessy, COD – RISC-V Edition
– Section 5.7

	CS-200�Computer Architecture�—�Part 3c. Memory Hierarchy�Virtual Memory
	The Five Classic Components of a Computer
	Segmentation Fault? Bus Error?
	Overview
	Needs of Multiprogrammed System
	Simple Solution: �Relocation at Load Time
	Simple Solution: �Relocation at Load Time
	Simple Solution: �Relocation at Load Time
	Relocation in Hardware:�Base and Bounds MMU
	Memory Management Unit (MMU)
	Virtual and Physical Memory
	Virtual and Physical Memory
	Relocation in Hardware:�Base and Bounds MMU
	Relocation in Hardware:�Base and Bounds MMU
	Virtual and Physical Memory
	Relocation in Hardware:�Base and Bounds MMU
	Relocation in Hardware:�Base and Bounds MMU
	Relocation in Hardware:�Base and Bounds MMU
	Needs of Multiprogrammed System
	Segmentation and Paging
	Segmentation and Paging
	How Do We Translate Now?
	How Do We Translate Now?
	Virtual Address Translation in a Paged MMU
	Virtual Address Translation for Program #2
	Memory Allocation Is Easy Now
	Page Tables Can Be Big
	Multilevel (or Hierarchical) Page Tables
	Two Memory Accesses Every Time?!
	A Specialized “Cache” for the Translations
	TLB Miss
	Memory Protection
	Needs of Multiprogrammed System
	Not All Pages Need to Be in Main Memory!
	TLB Miss – Revised
	Caches vs. Virtual Memory
	Page Table Attributes – Revisited
	Virtual Memory ↔ Cache
	TLB Misses, Cache Misses and Page Faults
	Overall Picture: The System Side
	Overall Picture: The Programmer Side
	Summary
	References

